Counting subspaces of given height defined over a function field

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Points of Fixed Degree and given Height over Function Fields

Let k be a finite algebraic extension of the field of rational functions in one indeterminate over a finite field and let k denote an algebraic closure of k. We count points in projective space Pn−1(k) with given height and generating an extension of fixed degree d over k. If n > 2d + 3 we derive an asymptotic estimate for the number of such points as the height tends to infinity. As an applica...

متن کامل

Points of Small Height on Varieties Defined over a Function Field

We obtain a Bogomolov type of result for the additive group scheme in characteristic p. Our result is equivalent with a Bogomolov theorem for Drinfeld modules defined over a finite field.

متن کامل

Counting Strings over Z2 with Given Elementary Symmetric Function Evaluations

Let α be a string over Zq , where q = 2. The j-th elementary symmetric function evaluated at α is denoted ej(α). We study the cardinalities Sq(m; τ1, τ2, . . . , τt) of the set of length m strings for which ei(α) = τi. The profile k(α) = 〈k1, k2, . . . , kq−1〉 of a string α is the sequence of frequencies with which each letter occurs. The profile of α determines ej(α), and hence Sq . Let hn : Z...

متن کامل

Counting Strings with Given Elementary Symmetric Function Evaluations I: Strings over Zp with p Prime

Let α be a string over Zp with p prime. The j-th elementary symmetric function evaluated at α is denoted Tj(α). We study the cardinalities Sp(n; τ1, τ2, . . . , τt) of the set of length n strings for which Ti(α) = τi. The profile 〈k0, k1, . . . , kp−1〉 of a string α is the sequence of frequencies with which each letter occurs. The profile of α determines Tj(α), and hence Sp. Let fn : Zp−1 pn 7→...

متن کامل

On the number of balanced words of given length and height over a two letter alphabet

The first investigations on discrete lines are dated back to E.B. Christoffel (Chr75), A. Markoff (Mar82) and more recently to G.A. Hedlund and H. Morse (MH40) who introduced the terminology of sturmian sequences, for the ones defined on a two-letter alphabet and coding lines with irrational slope. These works gave the first theoretical framework for discrete lines. A sequence u ∈ {0, 1}N is st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2008

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2008.06.011